Polynomial identities for matrices symmetric with respect to the symplectic involution
نویسندگان
چکیده
منابع مشابه
Combinatorial Proofs of Identities Involving Symmetric Matrices
Brualdi and Ma found a connection between involutions of length n with k descents and symmetric k×k matrices with non-negative integer entries summing to n and having no row or column of zeros. From their main theorem they derived two alternating sums by algebraic means and asked for combinatorial proofs. The purpose of this note is to give such demonstrations.
متن کاملInvolution Matrices of Real Quaternions
An involution or anti-involution is a self-inverse linear mapping. In this paper, we will present two real quaternion matrices, one corresponding to a real quaternion involution and one corresponding to a real quaternion anti-involution. Moreover, properties and geometrical meanings of these matrices will be given as reflections in R^3.
متن کاملInvariants and polynomial identities for higher rank matrices
We exhibit explicit expressions, in terms of components, of discriminants, determinants, characteristic polynomials and polynomial identities for matrices of higher rank. We define permutation tensors and in term of them we construct discriminants and the determinant as the discriminant of order d, where d is the dimension of the matrix. The characteristic polynomials and the Cayley–Hamilton th...
متن کاملRepresentations of the Symmetric Group and Polynomial Identities
Let Sn denote the symmetric group on n symbols. When F has characteristic zero or greater than n, the group algebra FSn is a direct sum of p(n) matrix algebras over F, where p(n) is the number of partitions of n. We present an efficient method due to J. M. Clifton (1981) that calculates the matrix associated to each element of Sn, for each partition of n. In 1950, A. I. Malcev and W. Specht ind...
متن کاملextensions of some polynomial inequalities to the polar derivative
توسیع تعدادی از نامساوی های چند جمله ای در مشتق قطبی
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 2012
ISSN: 0021-8693
DOI: 10.1016/j.jalgebra.2011.10.023